pm4py.algo.conformance.dcr package#
Subpackages#
- pm4py.algo.conformance.dcr.decorators package
- pm4py.algo.conformance.dcr.rules package
- Submodules
- pm4py.algo.conformance.dcr.rules.abc module
- pm4py.algo.conformance.dcr.rules.condition module
- pm4py.algo.conformance.dcr.rules.exclude module
- pm4py.algo.conformance.dcr.rules.include module
- pm4py.algo.conformance.dcr.rules.response module
- pm4py.algo.conformance.dcr.rules.role module
- Module contents
- pm4py.algo.conformance.dcr.variants package
Submodules#
pm4py.algo.conformance.dcr.algorithm module#
- class pm4py.algo.conformance.dcr.algorithm.Variants(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
- CLASSIC = <module 'pm4py.algo.conformance.dcr.variants.classic' from '/home/vco/Projects/pm4py-dcr4py/pm4py/algo/conformance/dcr/variants/classic.py'>#
- pm4py.algo.conformance.dcr.algorithm.apply(log: DataFrame | EventLog, G, variant=Variants.CLASSIC, parameters: Dict[Any, Any] | None = None) List[Dict[str, Any]] [source]#
Applies rule based conformance checking against a DCR graph and an event log.
Parameters#
- log
Event log / Pandas dataframe
- G
DCR Graph
- variant
Variant to be used: - Variants.CLASSIC
- parameters
Variant-specific parameters
Returns#
- conf_res
List containing dictionaries with the following keys and values: - no_constr_total: the total number of constraints of the DCR Graphs - deviations: the list of deviations - no_dev_total: the total number of deviations - dev_fitness: the fitness (1 - no_dev_total / no_constr_total), - is_fit: True if the case is perfectly fit
- pm4py.algo.conformance.dcr.algorithm.get_diagnostics_dataframe(log: EventLog | DataFrame, conf_result: List[Dict[str, Any]], variant=Variants.CLASSIC, parameters=None) DataFrame [source]#
Gets the diagnostics dataframe from a log and the conformance results
Parameters#
- log
Event log
- conf_result
Results of conformance checking
- variant
Variant to be used: - Variants.CLASSIC
- parameters
Variant-specific parameters
Returns#
- diagn_dataframe
Diagnostics dataframe