pm4py.conformance.conformance_dcr#
- pm4py.conformance.conformance_dcr(log: EventLog | DataFrame, dcr_graph: DcrGraph, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name', group_key: str = 'org:group', resource_key: str = 'org:resource', return_diagnostics_dataframe: bool = False) DataFrame | List[Tuple[str, Dict[str, Any]]] [source]#
Applies rule based conformance checking against a DCR model. reference: C. Josep et al., “Conformance Checking Software”, Springer International Publishing, 65-74, 2018., https://doi.org/10.1007/978-3-319-99414-7.
- Parameters:
log – event log
dcr_graph (
DcrGraph
) – DCR graphactivity_key (
str
) – attribute to be used for the activitytimestamp_key (
str
) – attribute to be used for the timestampcase_id_key (
str
) – attribute to be used as case identifiergroup_key (
str
) – attribute to be used as role identifierresource_key (
str
) – attribute to be used as resource identifierreturn_diagnostics_dataframe (
bool
) – if possible, returns a dataframe with the diagnostics (instead of the usual output)
- Return type:
DataFrame | List[Tuple[str,Dict[str, Any]]]